
図1

ウイルスと共に生きる

山内一也

日本科学未来館 2008年9月26日

ウイルスは30億年前に存在

図3 ヒトのウイルスはすべて動物由来

野生動物から感染したウイルス 家畜から感染したウイルス 系統進化で受け継がれたウイルス

→ ヒトのウイルスに進化

人獣共通感染症のウイルス 現在、動物から感染しているウイルス

図4 野生動物からのウイルス感染(旧石器時代)

人類は最後に出現した哺乳類

ネズミ:6000万年前

ウシ、ブタ:5400万年前

霊長類:420万年前

ホモ・サピエンス:20万年前

狩猟採集生活における 野生動物からの感染

温暖地域:黄熱ウイルス(サル)

森林型サイクル(サルー蚊ーサル)

都市型サイクル(人一蚊一人)

寒冷地域:狂犬病ウイルス

(オオカミ)

図5 家畜からのウイルス感染

農耕生活(1万年前)の開始、家畜の飼育

家畜のウイルスが集団生活の中で伝播、ヒトウイルスに進化 終生免疫ができるため常に感受性の人への伝播が必要 呼吸器感染(エアロゾル感染)

麻疹ウイルス:8000年前(ウシの牛疫ウイルスからの進化?)

推定人口25-40 万人の集団が必要

天然痘ウイルス:4000年前(ウマかウシのウイルスからの進化?)

(アメリカ大陸への麻疹、天然痘の侵入:コロンプス以後)

図6 系統進化とともに受け継がれたウイルス

ヘルペスウイルス(特徴:持続感染) 脊椎動物の出現(5.3億年前)以前から存在

無脊椎動物

軟体動物:カキヘルペスウイルス

脊椎動物

魚類:サクラマスヘルペスウイルス

両生類:カエルヘルペスウイルス

爬虫類:イグアナヘルペスウイルス

鳥類:シチメンチョウヘルペスウイルス

哺乳類:ウシ、ウマ、ブタ、サルなど多数

サルヘルペス(B) ウイルス → 単純ヘルペスウイルス サル水痘ウイルス → 水痘ウイルス

図7 ヒトウイルスへの進化(20世紀以降)

ヒト免疫不全ウイルス

HIV-1 チンパンジー由来 (1930年代に感染)

HIV-2 スーティマンガベイ由来 (20世紀に感染)

ブッシュミート(蛋白源)が原因

サルフォーミイウイルス

カメルーンでの無症状感染例 (ブッシュミートからの感染?) 新たなウイルスに進化?

図8 ウイルスの生存戦略

持続(潜伏)感染:ヘルペスウイルス、B型肝炎ウイルス

免疫系からの回避機構:天然痘ウイルス、ヘルペスウイル

急速な伝播:麻疹ウイルス、天然痘ウイルス

変異:インフルエンザウイルス

昆虫媒介:黄熱ウイルス(蚊)

図9

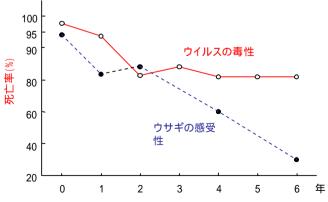
共存関係を目指すウイルスと宿主 (オーストラリアでのウサギ粘液腫ウイルスの例)

ウサギ粘液腫ウイルス 蚊が媒介するウイルス、ウサギで100% 近い致死率

1950:野ウサギ退治のためウイルス放出

当初ウサギの数は激減

1952:共存


ウサギが抵抗性を獲得 ウイルスの毒性低下

「赤の女王仮説」(進化生物学)

鏡の国のアリス

走る女王を景色が追いかけるため、永遠 に同じ場所にとどまる。

図10 キラーウイルスはウイルス本来の姿ではない

自然宿主:無症状感染(平和共存) トリインフルエンザウイルス:カモ 大規模養鶏→ヒト ラッサウイルス:マストミス 都市化→ヒト

ヒト: 致死的感染 キラーウイルスに変身

スペイン風邪のウイルス 患者の遺伝子から構築 (CDC)

CDCのラッサ熱プロジェクトのロゴ ラッサウイルス粒子内の砂粒様構造で アフリカ大陸を示す

図11 現代社会はウイルスにとって激動の環境

動物と共存しているウイルス:変異の必要ない カモにおけるインフルエンザウイルス

ウイルス: カモの糞便から排出 → 湖沼の水 → 経口感染 → 腸内で増殖 → 糞便 → 冬(湖沼で凍結保存) → 子ガモへの感染

現代社会によるウイルスへの圧力

ニワトリにおけるインフルエンザウイルス

抗体によるウイルス排除、ウイルスの変異(抗体の選択圧)

大規模養鶏(1960年代)で変異の速度増加

エイズ治療薬の使用(1990年代):抵抗性HIVの出現

図12 エマージングウイルスの出現と自然宿主

年代	病気(原因ウイルス)	発生国	自然宿主
 1957	アルゼンチン出血熱(フニンウイルス)	アルゼンチン	ネズミ
1959	ボリビア出血熱(マチュポウイルス)	ブラジル	ネズミ
1967	マールブルグ病(マールブルグウイルス)	ドイツ	?
1969	ラッサ熱(ラッサウイルス)	ナイジェリア	マストミス
1976	エボラ出血熱(エボラウイルス)	ザイール	オオコウモリ?
1977	リフトバレー熱(リフトバレーウイルス)	アフリカ	ヒツジ、ウシなど
1981	エイズ(ヒト免疫不全ウイルス)	アフリカ	チンパンジー
1991	ベネズエラ出血熱(グアナリトウイルス)	ベネズエラ	ネズミ
1993	ハンタウイルス肺症候群(シンノンプレウイルス)	米国	ネズミ
1994	ブラジル出血熱(サビアウイルス)	ブラジル	ネズミ?
1994	ヘンドラウイルス病(ヘンドラウイルス)	オーストラリア	オオコウモリ
1997	高病原性鳥インフルエンザウイルス	香港	カモ
1998	ニパウイルス病(ニパウイルス)	マレーシア	オオコウモリ
1999	西ナイル熱(西ナイルウイルス)	米国	野鳥
2003	SARS(SARSコロナウイルス)	中国ほか	キクガシラコウモリ
2003	サル痘(サル痘ウイルス)	米国	齧歯類
2004	高病原性鳥インフルエンザ	アジア、ヨーロッパ	カモ
		アフリカ	

図13 エマージングウイルスをもたらす現代社会

野生動物生態系と人間社会の距離の短縮

森林破壊と都市化:ラッサ熱、エボラ出血熱

人と動物の移動の増加:マールブルグ病

技術と工業の発展:エイズ、BSE、トリインフルエンザ

グローバリゼーション: SARS

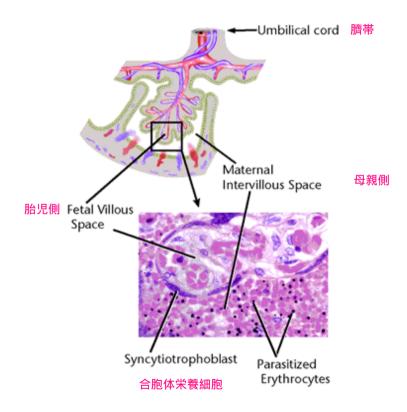
公衆衛生基盤の破綻:エボラ出血熱

図14

胎児の命を守るウイルス (ヒト内在性レトロウイルス:HERV)

HERVの由来

霊長類の染色体に2500万年前に組み込まれた化石のようなウイルス


HERVの役割

胎盤の合胞体栄養細胞の形成 HERVの蛋白質(シンシチン)の融合作 用による

合胞体栄養細胞の役割

胎児を攻撃する母親のリンパ球を阻止、 栄養のみを通過させる

胎児は移植された臓器と同じ存在(父親 由来の遺伝形質に対して母親のリン パ球が異物と認識)

図15 ウイルスは究極の寄生生命体

ウイルスはあらゆる生物に寄生

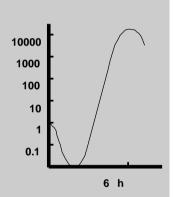
細菌ウイルス、植物ウイルス、昆虫ウイルス、動物ウイルス

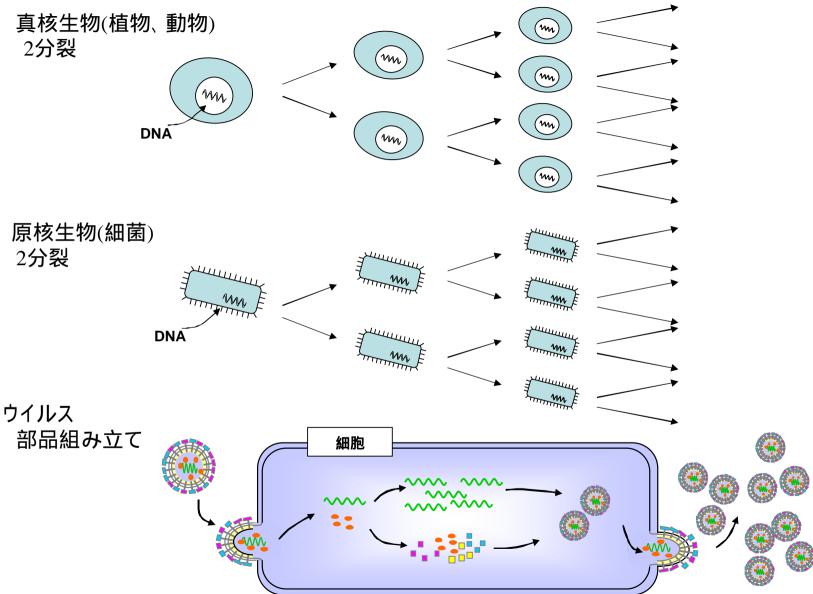
ウイルスの増殖

寄生する生物の細胞の代謝系を利用

ウイルスの増殖様式

構成蛋白(部品)の組み立て:1個のウイルスから10万個の子ウイルス(数時間)動物、植物、細菌は2分裂


ウイルスの遺伝子(DNAまたはRNA)

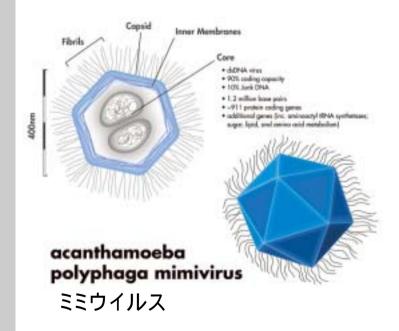

D型肝炎ウイルス (DNA):1個(B型肝炎ウイルスがヘルパーウイルス)

インフルエンザウイルス(RNA):8個

天然痘ウイルス(DNA, RNA):約200個

ミミウイルス (DNA): 約900個

図17 ミミウイルスが提起する問題


分離: 英国の冷却塔の水中のアメーバで(1992) 細菌ではな〈ウイルスと判明(1998) mimivirus (細菌に似ている: mimic) と命名

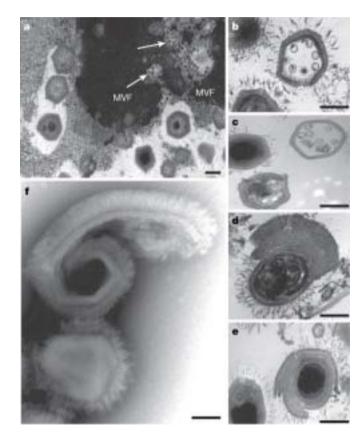
サイズ: 400 nm (天然痘ウイルス: 300 nm)

遺伝子: 911個(代謝機能遺伝子も存在) ゲノムサイズ約120万塩基対 最小の細菌・マイコプラズマ(遺伝子480個、 58万塩基対)

生物進化:細菌とウイルスの間の存在?

ヒトでの病原性∶肺炎?

図18 ウイルスに寄生するウイルス(Sputnik virus)


Mamavirus

パリの冷却水から分離
mimivirus(英国で分離)の新しい株
mimivirusよりも大きい

Sputnik virus (最初の衛星の名前を採用) mamavirus感染アメーバのウイルス増殖部位に寄生サイズ: 50 nm タンパク質コード遺伝子: 21個 (mimivirusは900個)

satellite virus(例:D型肝炎ウイルス)に類似 宿主ウイルスを損傷させる点が異なる (mamavirusの粒子構造を壊し異常なカプシド形成)

機能がbacteriophage類似: virophageの分類名提案

(La Scola, B. et al.: Nature, online Aug. 6, 2008)

図19 ウイルスは細胞のない生命体

	細菌	ウイルス
遺伝情報	DNA	DNA/RNA
(子孫の複製)		
代謝・エネルギー	+	- *
産生機構		
細胞の存在	+	_
増殖	2分裂	部品の組み立て

^{*}ミミウイルスは一部保有

ウイルスは生物か無生物か?:生物の定義をどう考えるか

図20 海はウイルスの巨大培養槽

海水中のウイルス

藍藻(細菌の1種):細菌ウイルス

植物プランクトン:植物ウイルス

海水1 ml中に含まれるウイルス粒子数:10億個~100万個

世界の海に含まれるウイルスについての試算

|深海:100万個/ml、沿岸:1億個/mlと仮定|

海のウイルスの総量

炭素の量:2億トン(シロナガスクジラ7500万頭に相当)

全部つなげた場合の長さ:1000万光年(銀河系に到達)

図21 生命体としてのウイルスの役割

最初の生命体 (RNAワールドの遺物?)

ウイルス → DNA → 原核生物(細菌) → 真核生物(植物、動物)

進化の原動力

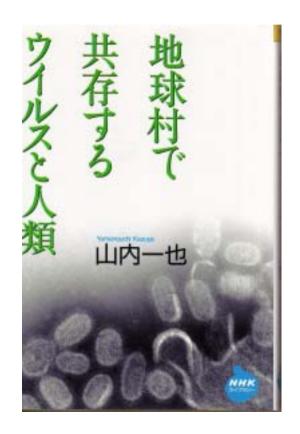
遺伝子の運び屋としてのウイルス

ヒトの妊娠維持

ヒト内在性レトロウイルスによる胎児の保護

地球環境での生態系の調節

植物ウイルスによる植物プランクトンの溶解


温室効果ガス放出の引き金

有機性炭酸ガスの蓄積(海が最大の貯蔵庫)

赤潮の終息(広島湾)

参考書

